FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (2024)

ABSTRACT

FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (1)

Graphics rendering on web browsers serves as the foundation for numerous web applications. Compared with the widely employed WebGL, the next-generation web graphics API, WebGPU, demonstrates an enhanced capacity to adapt to modern GPU features, boasting more significant potential. However, our experiment shows that the performance of current graphics rendering frameworks based on WebGPU lags behind those built on WebGL. Such discrepancy primarily arises from an incomplete alignment with WebGPU's distinctive features. The individual rendering of each graphic leads to redundant communication between the CPU and GPU. To enhance the graphics performance on the web, we introduce the FusionRender to harness the power of WebGPU. To mitigate redundant communication, FusionRender assigns a unique signature to each object and employs these signatures for grouping, enabling the consolidation of graphics rendering whenever possible. In simulated experiments involving the rendering of multiple objects, FusionRender improves the rendering performance by 29.3%-122.1% compared with the existing optimal baseline. In real cases with more complex features, performance improvement ranges from 9.4% to 39.7%. Additionally, FusionRender exhibits robust performance enhancement across various devices and browsers.

Skip Supplemental Material Section

Supplemental Material

rfp0465.mp4

Supplemental video

mp4

22.1 MB

Download

References

  1. Apple. 2023a. Developer forums topic about safari support for WebGPU. https://developer.apple.com/forums/thread/692979Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (2)
  2. Apple. 2023b. Metal. https://developer.apple.com/metal/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (3)
  3. Apple. 2023c. WebKit. https://webkit.org/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (4)
  4. Vasco Asturiano. 2023. 3d-force-graph. https://github.com/vasturiano/3d-force-graph/tree/masterGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (5)
  5. Babylon.js. 2023. Babylon.js. https://github.com/BabylonJSGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (6)
  6. Hussein Bakri. 2019. Adaptivity of 3D web content in web-based virtual museums: a quality of service and quality of experience perspective. Ph.,D. Dissertation. University of St Andrews.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (7)
  7. Alexander E Beasley, Christopher T Clarke, and Robert J Watson. 2020. An OpenGL compliant hardware implementation of a graphic processing unit using field programmable gate array--system on chip technology. ACM Transactions on Reconfigurable Technology and Systems (TRETS), Vol. 14, 1 (2020), 1--24.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (8)
  8. François Beaufort and Corentin Wallez. 2023. Chrome ships WebGPU. https://developer.chrome.com/blog/webgpu-release/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (9)
  9. Weichen Bi, Yun Ma, Deyu Tian, Qi Yang, Mingtao Zhang, and Xiang Jing. 2023. Demystifying Mobile Extended Reality in Web Browsers: How Far Can We Go?. In Proceedings of the ACM Web Conference 2023. 2960--2969.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (10)Digital Library
  10. Kevin C Cassidy, Jan vS efvc 'ik, Yogindra Raghav, Alexander Chang, and Jacob D Durrant. 2020. ProteinVR: Web-based molecular visualization in virtual reality. PLoS computational biology, Vol. 16, 3 (2020), e1007747.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (12)
  11. Alban Denoyel, Cédric Pinson, and Pierre-Antoine Passet. 2023. Sketchfab. https://sketchfab.com/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (13)
  12. Sören Discher, Rico Richter, and Jürgen Döllner. 2019. Concepts and techniques for web-based visualization and processing of massive 3D point clouds with semantics. Graphical Models, Vol. 104 (2019), 101036.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (14)Digital Library
  13. Alastair F Donaldson, Ben Clayton, Ryan Harrison, Hasan Mohsin, David Neto, Vasyl Teliman, and Hana Watson. 2023. Industrial Deployment of Compiler Fuzzing Techniques for Two GPU Shading Languages. In 2023 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, 374--385.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (16)
  14. Landon Dyken and Pravin Poudel. 2022. GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web.. In Eurographics Symposium on Parallel Graphics and Visualization.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (17)
  15. Jakub Floty'nski, Krzysztof Walczak, and Marcin Krzyszkowski. 2020. Composing customized web 3D animations with semantic queries. Graphical Models, Vol. 107 (2020), 101052.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (18)Digital Library
  16. Willis Fulmer, Tahir Mahmood, Zhongyu Li, Shaoting Zhang, Jian Huang, and Aidong Lu. 2019. ImWeb: Cross-platform immersive web browsing for online 3D neuron database exploration. In Proceedings of the 24th International Conference on Intelligent User Interfaces. 367--378.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (20)Digital Library
  17. Tower Game. 2023. Tower Game. https://www.towergame.app/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (22)
  18. Xiang Gong, Chunling Hu, and Chu-Cheow Lim. 2020. PAQSIM: Fast Performance Model for Graphics Workload on Mobile GPUs. In The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems. 3--14.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (23)Digital Library
  19. Google. 2023. Blink. https://www.chromium.org/blink/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (25)
  20. Khronos Group. 2023 a. OpenGL Shading Language. https://www.khronos.org/opengl/wiki/OpenGL_Shading_LanguageGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (26)
  21. Khronos Group. 2023 b. Vulkan Toturial. https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/IntroductionGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (27)
  22. Ujjwal Gupta, Manoj Babu, Raid Ayoub, Michael Kishinevsky, Francesco Paterna, Suat Gumussoy, and Umit Y Ogras. 2018. An online learning methodology for performance modeling of graphics processors. IEEE Trans. Comput., Vol. 67, 12 (2018), 1677--1691.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (28)Digital Library
  23. Masatoshi Hidaka, Yuichiro Kikura, Yosh*taka Ushiku, and Tatsuya Harada. 2017. Webdnn: Fastest dnn execution framework on web browser. In Proceedings of the 25th ACM international conference on Multimedia. 1213--1216.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (30)Digital Library
  24. Yakun Huang, Xiuquan Qiao, Pei Ren, Ling Liu, Calton Pu, and Junliang Chen. 2019. A lightweight collaborative recognition system with binary convolutional neural network for mobile web augmented reality. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 1497--1506.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (32)Cross Ref
  25. Jonatan Hvass, Oliver Larsen, Kasper Vendelbo, Niels Nilsson, Rolf Nordahl, and Stefania Serafin. 2017. Visual realism and presence in a virtual reality game. In 2017 3DTV conference: The true vision-capture, Transmission and Display of 3D video (3DTV-CON). IEEE, 1--4.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (34)
  26. Micha? Ja?d?yk. 2023. Minecraft client written in Javascript. https://github.com/michaljaz/webmcGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (35)
  27. Rabimba Karanjai. 2018. Optimizing Web Virtual Reality. Ph.,D. Dissertation. Rice University.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (36)
  28. Tomohiro Kawanabe, Kazuma Hatta, and Kenji Ono. 2020. ChOWDER: A New Approach for Viewing 3D Web GIS on Ultra-High-Resolution Scalable Display. In 2020 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 412--413.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (37)Cross Ref
  29. Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018. A high-performance software graphics pipeline architecture for the GPU. ACM Transactions on Graphics (TOG), Vol. 37, 4 (2018), 1--15.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (39)Digital Library
  30. Khronos. 2023 a. OpenGL ES. https://www.khronos.org/opengles/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (41)
  31. Khronos. 2023 b. Vulkan. https://www.vulkan.org/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (42)
  32. Jonas Kordt, Paul Brachmann, Daniel Limberger, and Christoph Lippert. 2021. Interactive Volumetric Region Growing for Brain Tumor Segmentation on MRI using WebGL. In The 26th International Conference on 3D Web Technology. 1--8.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (43)Digital Library
  33. Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion: Engineering high-quality immersive virtual reality on today's mobile devices. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. 409--421.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (45)Digital Library
  34. Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG), Vol. 39, 6 (2020), 1--14.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (47)Digital Library
  35. Jose Roberto Lazzareschi. 2023. Pinus Tree. http://jrlazz.eu5.org/anim/pinus_noSh.htmlGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (49)
  36. Reese Levine, Mingun Cho, Devon McKee, Andrew Quinn, and Tyler Sorensen. 2023 a. GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper). (2023).Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (50)
  37. Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto, Andrew Quinn, and Tyler Sorensen. 2023 b. MC mutants: Evaluating and improving testing for memory consistency specifications. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 473--488.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (51)Digital Library
  38. Wei Li, Shanshan Wang, Weidong Xie, Kun Yu, and Chaolu Feng. 2023. Large scale medical image online three-dimensional reconstruction based on WebGL using four tier client server architecture. Information Visualization, Vol. 22, 2 (2023), 100--114.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (53)Cross Ref
  39. Xianfeng Li, Gengchao Li, and Xiaole Cui. 2020. Retriple: reduction of redundant rendering on android devices for performance and energy optimizations. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1--6.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (55)Cross Ref
  40. Chang Liu, Wei Tsang Ooi, Jinyuan Jia, and Lei Zhao. 2018a. Cloud baking: Collaborative scene illumination for dynamic Web3D scenes. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), Vol. 14, 3s (2018), 1--20.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (57)Digital Library
  41. Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object detection for mobile augmented reality. In The 25th annual international conference on mobile computing and networking. 1--16.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (59)
  42. Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang, Lintao Zhang, and Marco Gruteser. 2018b. Cutting the cord: Designing a high-quality untethered vr system with low latency remote rendering. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. 68--80.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (60)Digital Library
  43. Xun Luo, Robert Kenyon, Derek Kamper, Daniel Sandin, and Thomas DeFanti. 2007. The effects of scene complexity, stereovision, and motion parallax on size constancy in a virtual environment. In 2007 IEEE Virtual Reality Conference. IEEE, 59--66.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (62)Cross Ref
  44. Dzmitry Malyshau. 2020. A Taste of WebGPU in Firefox. https://hacks.mozilla.org/2020/04/experimental-webgpu-in-firefox/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (64)
  45. Myles Maxfield. 2019. WebGPU and WSL in Safari. https://webkit.org/blog/9528/webgpu-and-wsl-in-safari/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (65)
  46. Microsoft. 2023. Direct3D 12. https://learn.microsoft.com/en-us/windows/win32/direct3d12/what-is-directx-12-Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (66)
  47. Hasan Mohsin. 2022. WGSLsmith: a random generator of WebGPU shader programs. Master's thesis, Imperial College London (2022).Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (67)
  48. Mozilla. 2023. Gecko. https://developer.mozilla.org/en-US/docs/Glossary/GeckoGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (68)
  49. Niantic. 2023. 8thWall. https://www.8thwall.com/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (69)
  50. Orillusion. 2023. Orillusion. https://github.com/Orillusion/orillusionGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (70)
  51. Hui Peng, Zhihao Yao, Ardalan Amiri Sani, Dave Jing Tian, and Mathias Payer. 2023. GLeeFuzz: Fuzzing WebGL Through Error Message Guided Mutation. USENIX Security'23 (2023).Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (71)
  52. Playcanvas. 2023. Playcanvas. https://github.com/playcanvas/engineGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (72)
  53. Daniel Pohl, Nural Choudhury, and Markus Achtelik. 2018. Concept for Rendering Optimizations for Full Human Field of View HMDs. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 663--664.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (73)
  54. Eric D Ragan, Doug A Bowman, Regis Kopper, Cheryl Stinson, Siroberto Scerbo, and Ryan P McMahan. 2015. Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE transactions on visualization and computer graphics, Vol. 21, 7 (2015), 794--807.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (74)Digital Library
  55. Mohammadreza Saed, Yuan Hsi Chou, Lufei Liu, Tyler Nowicki, and Tor M Aamodt. 2022. Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 263--281.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (76)
  56. Ales Saska, David Tichy, Robert Moore, Achilles Rasquinha, Caner Akdas, Xiaodong Zhao, Renato Fabbri, Ana Jelivc ić, Gaurav Grover, Himanshu Jotwani, et al. 2020. ccNetViz: a WebGL-based JavaScript library for visualization of large networks. Bioinformatics, Vol. 36, 16 (2020), 4527--4529.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (77)Cross Ref
  57. Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2021. Rendering point clouds with compute shaders and vertex order optimization. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 115--126.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (79)
  58. Rahul Singh, Muhammad Huzaifa, Jeffrey Liu, Anjul Patney, Hashim Sharif, Yifan Zhao, and Sarita Adve. 2023. Power, performance, and image quality tradeoffs in foveated rendering. In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE, 205--214.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (80)Cross Ref
  59. Lisa St"ahli, David Rudi, and Martin Raubal. 2018. Turbulence ahead-a 3D web-based aviation weather visualizer. In Proceedings of the 31st annual ACM symposium on user interface software and technology. 299--311.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (82)
  60. Kay M Stanney, Kelly S Kingdon, David Graeber, and Robert S Kennedy. 2002. Human performance in immersive virtual environments: Effects of exposure duration, user control, and scene complexity. Human performance, Vol. 15, 4 (2002), 339--366.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (83)
  61. Three.js. 2023 a. The Forum of Three.js. https://discourse.threejs.org/c/showcase/7Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (84)
  62. Three.js. 2023 b. Three.js. https://github.com/mrdoob/three.js/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (85)
  63. Rhodora Vennarucci, David Fredrick, Davide Tanasi, Nicholas Reynolds, Kaitlyn Kingsland, Brianna Jenkins, and Stephan Hassam. 2021. In Ersilia's Footsteps: Toward an Interactive WebGL Application for Exploring the Villa Romana del Casale at Piazza Armerina, Sicily. In The 26th International Conference on 3D Web Technology. 1--7.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (86)Digital Library
  64. W3C. 2023 a. WebGL. https://developer.mozilla.org/en-US/docs/Web/API/WebGL_APIGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (88)
  65. W3C. 2023 b. WebGPU. https://www.w3.org/TR/webgpu/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (89)
  66. W3C. 2023 c. WebGPU Shading Language. https://www.w3.org/TR/WGSL/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (90)
  67. W3C. 2023 d. WebXR. https://immersiveweb.dev/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (91)
  68. Corentin Wallez, Brandon Jones, and François Beaufort. 2023. WebGPU: Unlocking modern GPU access in the browser. https://developer.chrome.com/blog/webgpu-io2023/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (92)
  69. Chao Wang, Shuanq Lianq, and Jinyuan Jia. 2018. Immersing Web3D Furniture into Real Interior Images. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 721--722.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (93)Cross Ref
  70. Robert B Welch, Theodore T Blackmon, Andrew Liu, Barbara A Mellers, and Lawrence W Stark. 1996. The effects of pictorial realism, delay of visual feedback, and observer interactivity on the subjective sense of presence. Presence: Teleoperators & Virtual Environments, Vol. 5, 3 (1996), 263--273.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (95)Digital Library
  71. Wonderstruck. 2023. Polycraft. http://polycraftgame.com/Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (97)
  72. Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang. 2019. Rendered private: Making $$GLSL$$ execution uniform to prevent $$WebGL-based$$ browser fingerprinting. In 28th USENIX Security Symposium (USENIX Security 19). 1645--1660.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (98)
  73. Wunderdog. 2023. Bubble Figure. https://github.com/wunderdogsw/go-23-appGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (99)
  74. Kui Xu, Nan Liu, Jingle Xu, Chunlong Guo, Lingyun Zhao, Hong-Wei Wang, and Qiangfeng Cliff Zhang. 2021. VRmol: an integrative web-based virtual reality system to explore macromolecular structure. Bioinformatics, Vol. 37, 7 (2021), 1029--1031.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (100)Cross Ref
  75. Simin Yang, Ze Gao, Reza Hadi Mogavi, Pan Hui, and Tristan Braud. 2023. Tangible Web: An Interactive Immersion Virtual Reality Creativity System that Travels Across Reality. In Proceedings of the ACM Web Conference 2023. 3915--3922.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (102)Digital Library
  76. Zhihao Yao, Saeed Mirzamohammadi, Ardalan Amiri Sani, and Mathias Payer. 2018. Milkomeda: Safeguarding the mobile gpu interface using webgl security checks. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1455--1469.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (104)Digital Library
  77. Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu. 2022. LuisaRender: A High-Performance Rendering Framework with Layered and Unified Interfaces on Stream Architectures. ACM Transactions on Graphics (TOG), Vol. 41, 6 (2022), 1--19.Google ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (106)Digital Library
  78. Wen Zhou, Kai Tang, and Jinyuan Jia. 2018. S-LPM: segmentation augmented light-weighting and progressive meshing for the interactive visualization of large man-made Web3D models. World Wide Web, Vol. 21 (2018), 1425--1448. ioGoogle ScholarFusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (108)Digital Library

Cited By

View all

FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (110)

    Index Terms

    1. FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers

      1. Computing methodologies

        1. Computer graphics

          1. Rendering

          1. World Wide Web

            1. Web applications

        Recommendations

        • Web Image Formats: Assessment ofTheir Real-World-Usage andPerformance Across Popular Web Browsers

          Product-Focused Software Process Improvement

          Abstract

          In 2023, images on the web make up 41% of transmitted data, significantly impacting the performance of web apps. Fortunately, image formats like WEBP and AVIF could offer advanced compression and faster page loading but may face performance ...

          Read More

        • Performance Optimization of the HPCG Benchmark on the Sunway TaihuLight Supercomputer

          In this article, we present some key techniques for optimizing HPCG on Sunway TaihuLight and demonstrate how to achieve high performance in memory-bound applications by exploiting specific characteristics of the hardware architecture. In particular, we ...

          Read More

        • A Performance Comparative on Most Popular Internet Web Browsers

          Abstract

          Our reliance on the internet increases daily as it depends on the number of services implemented on the internet. With the growth of internet usage dramatically increasing, more users feel the need to explore and utilize it to the fullest. The ...

          Read More

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        Get this Publication

        • Information
        • Contributors
        • Published in

          FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (111)

          WWW '24: Proceedings of the ACM on Web Conference 2024

          May 2024

          4826 pages

          ISBN:9798400701719

          DOI:10.1145/3589334

          • General Chairs:
          • Tat-Seng Chua

            National University of Singapore

            ,
          • Chong-Wah Ngo

            Singapore Management University

            ,
          • Proceedings Chair:
          • Roy Ka-Wei Lee

            Singapore University of Technology and Design

            ,
          • Program Chairs:
          • Ravi Kumar

            Google

            ,
          • Hady W. Lauw

            Singapore Management University

          Copyright © 2024 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [emailprotected].

          Sponsors

            In-Cooperation

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 13 May 2024

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (117)

              Author Tags

              • graphics
              • performance optimization
              • web applications
              • webgpu

              Qualifiers

              • research-article

              Conference

              Acceptance Rates

              Overall Acceptance Rate1,899of8,196submissions,23%

              Funding Sources

              • FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (119)

                Other Metrics

                View Article Metrics

              • Bibliometrics
              • Citations0
              • Article Metrics

                • Total Citations

                  View Citations
                • 60

                  Total Downloads

                • Downloads (Last 12 months)60
                • Downloads (Last 6 weeks)60

                Other Metrics

                View Author Metrics

              • Cited By

                This publication has not been cited yet

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              Digital Edition

              View this article in digital edition.

              View Digital Edition

              • Figures
              • Other
                FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers | Proceedings of the ACM on Web Conference 2024 (2024)
                Top Articles
                Latest Posts
                Article information

                Author: Duane Harber

                Last Updated:

                Views: 6218

                Rating: 4 / 5 (71 voted)

                Reviews: 86% of readers found this page helpful

                Author information

                Name: Duane Harber

                Birthday: 1999-10-17

                Address: Apt. 404 9899 Magnolia Roads, Port Royceville, ID 78186

                Phone: +186911129794335

                Job: Human Hospitality Planner

                Hobby: Listening to music, Orienteering, Knapping, Dance, Mountain biking, Fishing, Pottery

                Introduction: My name is Duane Harber, I am a modern, clever, handsome, fair, agreeable, inexpensive, beautiful person who loves writing and wants to share my knowledge and understanding with you.